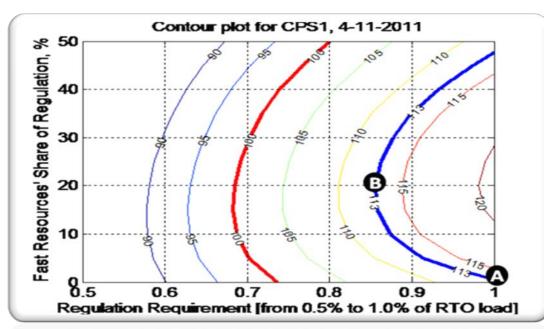


Benefits Factor and the "Effective" MW

Scott Benner July 1st, 2015

www.pjm.com PJM©2015



- 2011 KEMA Study on Dynamic Regulation
- Benefits Factor Curve Formulation
- Performance Based Regulation
- Performance Score Calculation Engine (PSCE)
- Settlement Considerations

- In Summer 2011, PJM commissioned KEMA to study the impact on system control by simulating two variables of dynamic signal following resources
 - Increasing dynamic resource participation
 - Lowering regulation capability requirement
- Finding 1
 - Some fast is better than none
- Finding 2
 - Found an inflection point where adding additional dynamic regulation caused CPS1 scores (System Reliability) to decrease

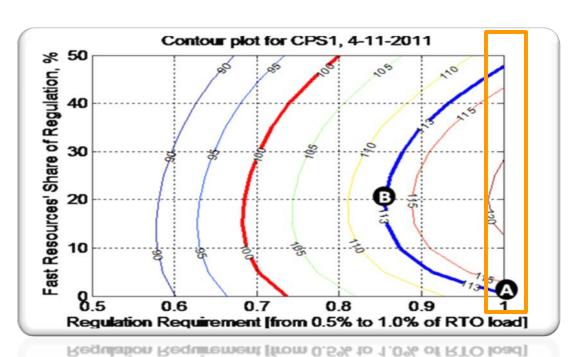
Regulation Requirement [from 0.5% to 1.0% of RTO load]

What it is

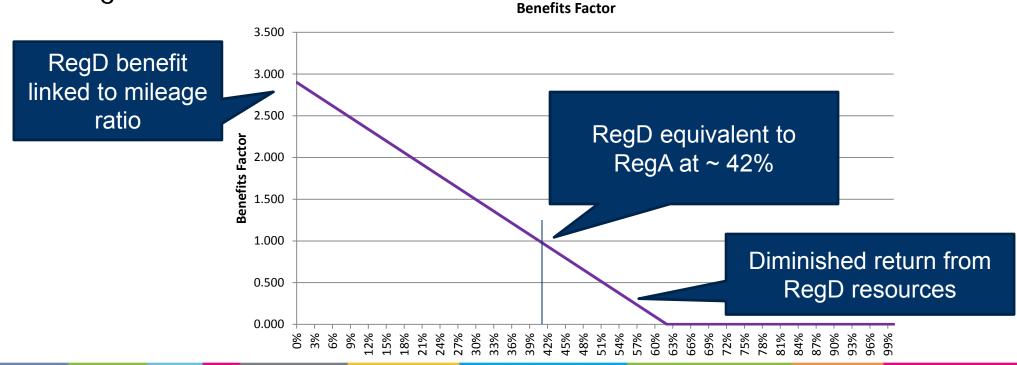
- Simulation of perfect RegD vs lagging RegA
- 4 representative seasonal weeks
- 2-second interval
 Power Flow vs Unit
 Commitment

What it is not

- Analysis of actual resource performance
- Determination of relation to seasonality
- Source of Benefits Factor Curve


The Benefits Factor:

- Models the rate of substitution between traditional (RegA) and dynamic (RegD) resources
- Enables the market to translate fast moving resource's regulation MW into traditional MW, or <u>effective</u> MW
- Adjusts RegD resource's offer price


- Averaged the CPS-1 results for the 4 simulated weeks
- For a constant requirement,
 - From A, each additional RegD resource improves reliability
 - At ~ 42%, reliability is the same as no RegD at all, so the benefit is 1.0.
 - Beyond 42%, each additional
 RegD harms reliability, so the
 benefit should be < 1 to zero.

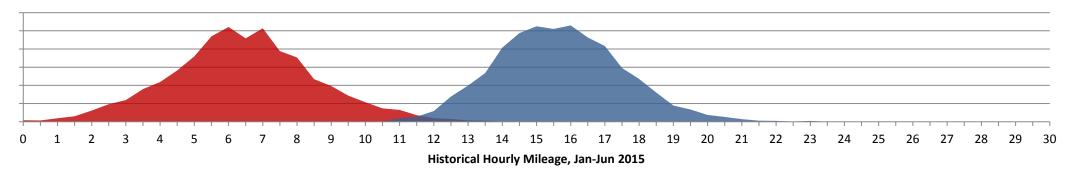
Benefits Factor Curve in Market Clearing

- Provides a sliding scale that makes RegD resources more desirable until the optimal resource mix of 30-45%. It translates a RegD MW into a RegA MW.
- Ranges from 2.9 to 0.01

What drives Performance Based Regulation?

- The Regulation Market should incentivize
 - Accuracy following a shape
 - Timeliness reduce delay in response
 - Precision provide ACE correction
- Objective uniform scoring methodology
 - Signal vs. Response
- Resource's Performance Score [0..1] should capture these characteristics

Performance Score Components


- 1) Accuracy the correlation or degree of relationship between control signal and regulating unit's response
 - 5 minute rolling correlation with 10 second granularity
 - Re-calculated with a 10 second time shift up to 5 minutes
- 2) **Delay** the time delay between control signal and point of highest correlation from Step 1.
 - Up to 5 minutes
- 3) **Precision** The instantaneous error between the control signal and the regulating unit's response.
- Performance Score = A [Score_A] + B [Score_D] + C [Score_P]
 - A, B, C are scalars from [0..1], total to 1. Currently 0.333 each
 - Produces a weighted average of component scores

 Mileage is the absolute sum of movement of the regulation signal in a given time period

$$\begin{aligned} \textit{Mileage}_{\textit{RegA}} &= \sum_{i=0}^{n} |\textit{RegA}_i - \textit{RegA}_{i-1}| \\ \textit{Mileage}_{\textit{RegD}} &= \sum_{i=0}^{n} |\textit{RegD}_i - \textit{RegD}_{i-1}| \end{aligned}$$

 Resources following the dynamic signal will move much more than those on traditional signal

For each resource, calculate

$$Adjusted\ Total\ Offer\ Cost\ (\$) = \begin{pmatrix} Adjusted \\ Regulation \\ Capability \\ Cost \\ (\$) \end{pmatrix} + \begin{pmatrix} Lost \\ Opportunity \\ Cost \\ (\$/MW) \end{pmatrix} + \begin{pmatrix} Adjusted \\ Performance \\ Cost \\ (\$) \end{pmatrix}$$

$$Capability\ Payment \qquad Performance\ Payment$$

 $Rank\ Price = \frac{Adjusted\ Total\ Offer\ Cost\ (\$)}{Capability\ (MW)}$

Order resources by rank price, clearing by Effective MW

$$\begin{array}{c} \textit{Regulation Requirement} \leq \sum_{i=1}^{n} \textit{Capability MW}_{i} * \textit{Benefits Factor}_{i} * \textit{Historic Performance Score}_{i} \end{array}$$

11 PJM©2015

Adjusted Capability Cost

Historical Formula pre-PBR

$$Adjusted \ Regulating \ Capability \ Cost \ (\$) = \begin{pmatrix} \\ Offer \ \left(\frac{\$}{MW}\right) \end{pmatrix} \begin{pmatrix} Capability \\ (MW) \end{pmatrix}$$

$$\begin{pmatrix} Benefits \ Factor \\ of \\ Offered \ Resource \end{pmatrix} \begin{pmatrix} Historic \\ Performance \\ Score \end{pmatrix}$$

Dynamic resources use scaled factor, traditional uses 1.0

Average of last 100 hours of performance scores

Adjusted Performance Cost

30 day average of historical mileage

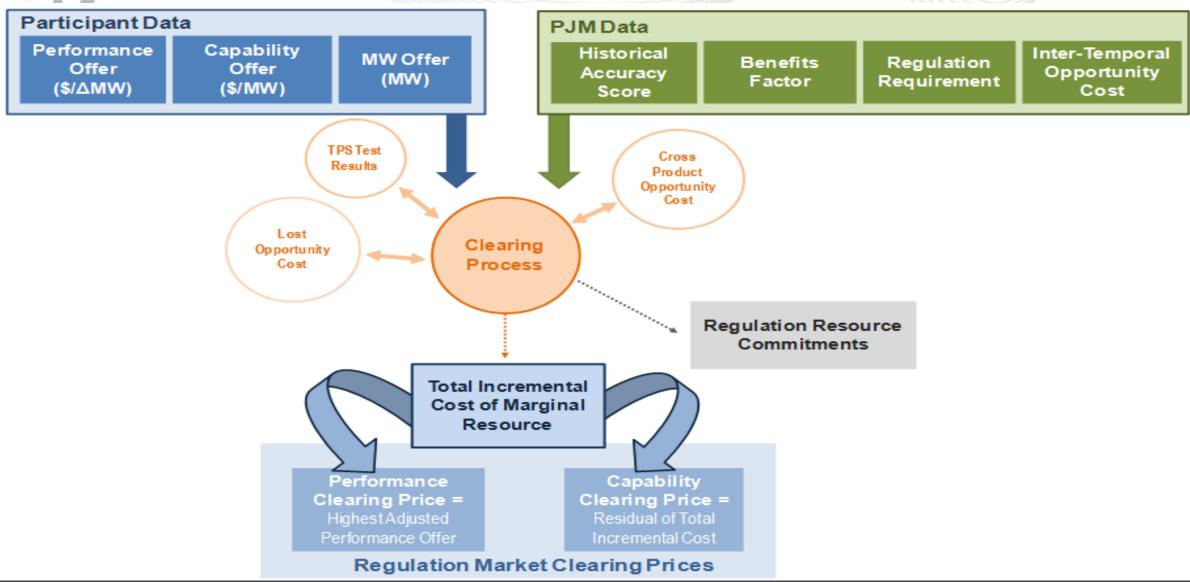
$$Adjusted\ Performance\ Cost\ (\$) = \frac{\begin{pmatrix} Performance \\ Offer \\ (\$/MW) \end{pmatrix} * \begin{pmatrix} Historical\ Mileage \\ of \\ Offered\ Resource\ Signal\ Type \end{pmatrix}}{\begin{pmatrix} Benefits\ Factor \\ of \\ Offered\ Resource \end{pmatrix}} * \begin{pmatrix} Capability \\ (MW) \end{pmatrix}$$

Dynamic resources use scaled factor, traditional uses 1.0

Average of last 100 hours of performance scores

Regulation Lost Opportunity Cost (RegLOC)

LOC is the foregone revenue or increase in costs relative to the energy market for providing regulation

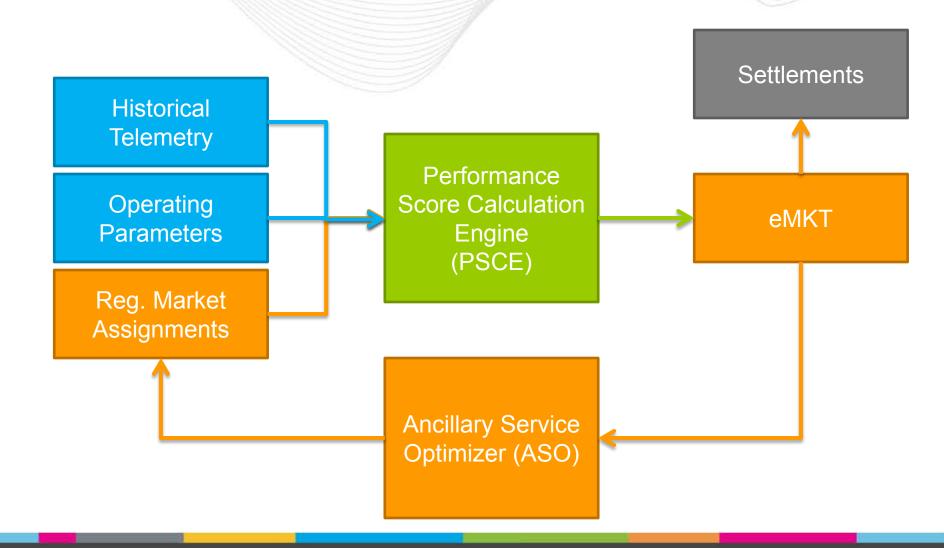

- Calculated only for resources providing energy along with regulation service
- Calculated only for pool scheduled regulation resources
- Is \$0 for DSR, self-scheduled regulation, and Non-Energy Regulation resources
- Can only be positive, else zero
- Calculated only within Eco limit range
 - ➤ Economic Minimum to Economic Maximum range
- Co-optimized with energy in intra-hour Regulation Market Clearing Price

- Marginal resource sets Total Regulation Market Clearing Price (RMCP)
 - Performance Clearing Price (PCP) is the maximum of Adjusted Performance Cost/MW over all committed resources
 - Capability Clearing Price (CCP) is the residual, Total RMCP minus
 PCP
 - Marginal Benefits Factor (MBF) reported, but isn't consumed by anything

Market Clearing Process

16 PJM©2015

- Performance Score Calculation Engine (PSCE)
 - Calculates hourly scores for all regulating units for settlements credits
 - Calculates daily scores for ASO clearing & settlements LOC credits
 - Calculates 5-minute mileage for RMCP (-P/-C) pricing
 - Calculates hourly mileage for settlement credits
 - Calculates daily mileage for ASO clearing
- Windows Service runs continuously, User Interface on demand
 - ... Same code behind



Performance Score Calculation Engine

Energy Basepoints Signals

Ramp rates

AREG

18 PJM©2015

- Hourly Performance Scores
 - Solve at 15 min after every hour, for the previous operating hour
 - For every assigned unit, pull 10-sec telemetry from the PI
 Historian and blend it with market resource assignment and ramp rate data
 - 10-sec values are rolled into hourly averages
 - Detail available upon request
 - Values are loaded into markets databases

- Regulation Accounting rules are defined in Manual 28 Section 4
 - Resources are paid on capability, performance and lost opportunity
 - Payments are scaled by hourly accuracy scores
 - Dynamic resources are given additional payment as a function of hourly REGD/REGA mileage ratio
 - A dynamic resource is asked to move ~ 3 times as much as a traditional resource in an average hour
 - After-the-fact analysis of the REGA and REGD signals determines the multiplier

Lost Opportunity / Make Whole Considerations

"Shoulder Hour" Lost Opportunity

- Ramping into and out of service occurs outside the operating hour
- Is included in Clearing, as an estimate
- Is not included in 5-minute Pricing
- Is included in Settlements, as unit specific LOC

Product Substitution

- Unit-specific Benefit Factor used in Clearing
- Unit-specific Benefit Factor used in Pricing
- Mileage Ratio used in Settlements

- Resources' hourly credits are calculated using actual performance scores and mileage
- Marginal benefit factor will <u>not</u> scale payments like pricing

 After-the-fact make whole payments (LOCC) have been greatly reduced; shoulder hour logic is now primary driver

- FERC issued a Deficiency Notice during PBR development
 - Marginal Benefits Factor (MBF) not allowed in Settlements
 - Operated with a "1" multiplier until July 2013
 - PJM resettled almost a year's billing with Mileage Ratio in Oct 2013
- Hourly Mileage Ratio = Mileage_{RegD} / Mileage_{RegA}
 - 2015 YTD Average ≈ 2.38
 - Mileage Ratio often larger than MBF; incentivizes more Reg D