



NEW YORK UNIVERSITY SCHOOL OF LAW

### **Stakeholder Presentation on FERC Order 1920** Transmission Modeling and the Importance of Solid Input Data

PJM (Online)

Christoph Graf (New York University)

Sept 6, 2024



- Presentation is mainly based on
  - Multi-Objective Transmission Expansion: An Offshore Wind Power Integration Case Study by Saroj Khanal, Christoph Graf, Zhirui Liang, Yury Dvorkin, Burçin Ünel [link]
  - Transmission Planning for the Energy Transition: Rethinking Modeling Approaches by Jennifer Danis, Christoph Graf, Matthew Lifson, Burçin Ünel [link]

# **Future Vision / Data and Modeling / Outcomes**





# Future Vision / Data and Modeling / Outcomes

- Future vision of the power system is important
  - Including all laws and policies impacting supply (e.g., for clean energy) and demand drivers (e.g., demand growth from taxincentivized data centers)
- However, at some point any vision needs to be translated into workable assumptions and inputs to model future outcomes
  - Where will future clean generation and storage be located?
  - Will electric vehicles and heat pumps be able to communicate with the grid? I.e., can we use them as storage to a certain extent?



# Future Vision / Data and Modeling / Outcomes

- In practice both future vision and how it is implemented will affect planning outcomes
- Stakeholder should not only focus on the future vision but also on data and modeling (i.e., the whole chain that determines planning outcomes)



## **Generation and Transmission Planning Models**

Key Components of Transmission Planning Models



# Generation and Transmission Planning Models (cont'd)

Minimize: Total Investment Cost (Generation, Storage, Transmission) +

Expected Operating Cost (including demand side valuation of power)

Subject to: Operational Constraints of Generation and Storage

*Capacity Constraints of Generation, Storage, and Transmission Power Balance Constraints accounting for power flows Reserve Constraints* 

The operational (production) model can range from simple (economic dispatch) to very detailed (security constrained unit commitment). Model can be formulated as two-stage stochastic program or multistage stochastic program.



- For a fixed transmission plan (as well as generation/storage plan) the model can be used to compute counter-factual market simulations
- Co-optimizing transmission, generation, and storage may result in more realistic locational resource predictions than the interconnection queue
- Making a reasonable zonal representation of the PJM grid<sup>1</sup> publicly available, could help stakeholders to better support the planning process
  - Because specific (sets of) transmission solutions may not be publicly available, PJM could estimate their impact on zonal transmission interface limits as in Brown et al. (2023)<sup>2</sup>

<sup>1</sup> E.g., the Plexos zonal model that PJM has used in the past (CAPSTF Task Force). <sup>2</sup> Brown et al., 2023, "A general method for estimating zonal transmission interface limits from nodal network data," https://arxiv.org/abs/2308.03612.



- 1) Generator database based on EIA-860 form data (Snapshot 2021); Exogenous retirements
- 2) Locational distributions of load and capacity factors from onshore wind, offshore wind, and solar (EPA IPM Model / NREL)
- 3) Annual Load Growth: 1%
- 9-zone representation of the PJM grid (EPA IPM Model) + 8 offshore wind zones ("pipesand-bubbles" energy transport)
- 5) Investment cost estimates from NREL (ATB 2022)
- 6) Modeling horizon is 20 years (4 Epochs with 5 years each)

#### **Baseline Transmission**





#### PJM Retirements<sup>1</sup>



#### PJM Retirements + 2035 Coal Phaseout





# **On Retirements (Transmission Upgrades)**

**PJM Retirements** 





<u>More</u> (approx. +1 GW) and <u>different</u> transmission needed if Coal is phased out in 2035 on top of PJM retirements



- Best possible input data are essential for sound transmission planning outcomes.
- Operationalizing transmission drivers into modeling data and assumptions is an important part of sound planning.
- Transparent transmission modeling can support the stakeholder process.



## Christoph Graf christoph.graf@nyu.edu