

Efficiency never looked so good®

BOLD[®]

(Breakthrough Overhead Line Design®)

The BOLD Challenge:

- Achieve greater capacity and efficiency at native voltages
 - Avoid series compensation and specialized equipment
 - Increase utilization of existing and future ROW's
- Reduce environmental and visual impacts
- Deliver technology that consumers and regulators desire
- Achieve the above AND be cost competitive

If we could start from a blank page, what would transmission look like?

BOLD Delivers

- Higher Capacity & Efficiency
 - Significantly increases capacity (up to 60%)
 - Avoids complexity and cost of compensation
 - Avoids SSR issues with rotating generation
 - Reduces Line Losses (up to 33%)

• Environmentally Friendly

- Mitigates electromagnetic field effects (up to 50%)
- <u>Reduces structure heights (as much as 30%)</u>
- Provides <u>simple</u>, <u>elegant</u>, low-profile design
- o Built-in avian protection features

Regulatory Answers

- o Addresses need for <u>Advanced Transmission Technology</u>
- More <u>rapidly brings</u> new and replacement <u>circuits into service</u>
- <u>Maximizes right-of-way</u> utilization

• BOLD is Cost Competitive

- BOLD competes on a first-cost basis
- BOLD excels on a \$/MW basis

BOLD Survey Summary

Public concerns regarding transmission include property value, health impacts, visual impacts

- **79%** value advanced technology
- **75%** would pay more for advanced technology
- <u>70%</u> preferred **BOLD** structures versus traditional double-circuit design

Acceptable monthly premium for advanced technology:

Survey conducted with 1,000 U.S. customers and 500 European customers.

BOLD Award-winning Technology

2017 Recipient of <u>Edison Electric Institute's</u>
 EDISON AWARD

2017 Recipient of <u>NARUC's</u>
 INNOVATION IN ELECTRICITY AWARD

• 2017 Grand Prize Recipient of <u>CIGRE/KEPCO's</u> INTERNATIONAL TOWER DESIGN AWARD

BOLD Project Deployment

as of Aug. 2024

BOLD®

Over 100 miles installed (In Indiana and Ohio), meeting or exceeding design criteria. An additional 250+ miles in construction or design.

HOW IT WORKS

BOLD Development

How **BOLD** Works

- Leverage physics to maximize electrical performance:
 - (1) Reduce phase separation into a "delta" configuration
 (2) Optimize conductor size and bundle diameter
- Reduces inductance (L) and impedance (Z) and increases capacitance (C)
- Higher degree of intrinsic "self-compensation"
- Arched cross arm and interphase insulators

BOLD ADVANTAGE – THE MATH

• Surge Impedance changes with $\sqrt{L^+/C^+}$ (ohm)

$$L^{+} \approx \frac{\mu_{o}}{2\pi} ln\left(\frac{d_{eq}}{R_{eq}}\right) = 0.3219 ln\left(\frac{d_{eq}}{R_{eq}}\right) mH/mi$$

$$C^{+} \approx \frac{2\pi\epsilon_{o}}{\ln\left(\frac{d_{eq}}{R_{eq}}\right)} = \frac{89.41}{\ln\left(\frac{d_{eq}}{R_{eq}}\right)} nF/mi$$

$$Z^{+} \approx 60 ln\left(\frac{d_{eq}}{R_{eq}}\right) \Omega$$

o Where:

•
$$d_{eq} = \sqrt[3]{d_{ab}d_{bc}d_{ca}}$$
 Eq. Phase Spacing (ft)

- $R_{eq} = \sqrt[N]{NrR^{N-1}}$ Eq. Bundle Radius (ft)
- $d_{ab}, d_{bc}, d_{ca} = Phase spacings (ft)$
- N = Number of subconductors per phase
- r = Subconductor radius (ft)
- R = Subconductor bundle radius (ft)

L, Z decrease; C increases with:

- Closer phase spacing
- More sub-conductors
- Larger bundle diameter
- Larger conductor diameter

BOLD leverages these principles

LINE LOADABILITY BASED ON: SURGE IMPEDANCE LOADING (SIL)

The St. Clair Curve represents a transmission line's power delivery capability over distance without reactive compensation.

EXAMPLE Meadow Lake – Reynolds 345-kV

<u>Higher Capacity – 345 kV</u>

(Values are approximate)

<u>Higher Capacity – 230 kV</u>

(Values are approximate)

SIL Comparisons

765kV Single-circuit (6-conductor) ~2,400 MW

200' ROW

BOLD is a relevant option for long-haul power Transmission

150' ROW

Better Use of RoW

BOLD allows you to deliver **more** power in a given rightof-way when compared to traditional transmission line designs. That means less land is needed to fulfill capacity needs.

BOLD®

One **BOLD** 345-kV double-circuit line can deliver the same power carrying capacity as three traditional 345-kV single- circuit lines creating a smaller environmental footprint of roughly 1/3 by comparison

Magnetic Field Mitigation

Traditional 345-kV

Magnetic Field Profile @1000MVA Per Circuit Traditional 345-kV 2-Falcon 25.5ft Phase Spacing 18" Bundle Diameter Super Bundle Arrangement (A-B-C / A-B-C)

BOLD 345-kV

Magnetic Field Profile @1000MVA Per Circuit BOLD 345-kV 3-Cardinal 15ft Phase Spacing 29" Bundle Diameter Super Bundle Arrangement (A-B-C / A-B-C)

Magnetic Field Intensity (mG)

<u>Structure Comparison – 345 kV</u>

1000' Span Lengths

<u>Structure Comparison – 230 kV</u>

1000' Span Lengths

BOLD Reduces Avian Interaction*

Nesting

- BOLD <u>eliminates cavity nests</u> and should <u>minimize corvid and raptor stick nests</u> due to the unique arch-shaped cross member.
- Collision
 - BOLD has design elements to <u>reduce</u> <u>collision</u> risk
- Feces
 - BOLD <u>should reduce pollution outages</u> by limiting perching and creating a barrier; it may also reduce streamer outages.
- Predation Management
 - BOLD may <u>minimize avian predation on</u> <u>sensitive species</u> by reducing nesting on transmission structures.
- Electrocution
 - BOLD can be implemented as <u>eagle</u> <u>friendly</u>

BOLD STRUCTURE FAMILY

M. M. Ande

BOLD Structure Families

OPTIONS	115/138-kV	230-kV	345-kV
Single Circuit	\checkmark	\checkmark	\checkmark
Double Circuit	\checkmark	\checkmark	\checkmark
Various Conductor Options	\checkmark	\checkmark	\checkmark

BOLD Conductor Options

	3-954 BOLD Lattice	3-954 Traditional Lattice	2-1590 BOLD Lattice	2-1590 Traditional Lattice	2-954 BOLD Lattice	2-954 Traditional Lattice
Average Line Cost* (\$/mile)	100%	105%	97%	102%	87%	92%
Tangent Structure Weight (lbs.)	100%	118%	95%	108%	85%	97%
Foundation (cu. yd)	100%	106%	97%	103%	91%	97%
Impedance (Ω)	100%	+127%	+122%	+136%	+130%	+145%
*Indicative cost comparison, using common assumptions and unit pricing.	Baseline					

BOLD is the optimal design for cost and impedance.

A Cost Competitive BOLD Solution

TraditionalPole Weight36,600 lbsArm Weight10,378 lbsGL Moment6,000 ft-KFoundation Size6.5 ft x 25ft

Pole Cost	100%
Arm Cost	100%
Anchor B Cost	100%
Foundation Cost	100%
Total Cost	100%

BOLD

Pole Weight	33,098 lbs
Arm Weight	11,070 lbs
GL Moment	4,600 ft-K
Foundation Size	6 ft x 22 ft

Pole Cost	90%
Arm Cost	157%
Anchor B Cost	60%
Foundation Cost	<u>75%</u>
Total Cost	99%

Typical 345-kV Tangent Structure

2-1590 ACSR Falcon

A Cost Competitive BOLD Solution

<u>Traditional</u>

Pole Weight42,100 lbsArm Weight10,500 lbsGL Moment6,150 ft-KFoundation Size6.5 ft x 25ft

Total Cost	100%
Foundation Cost	100%
Anchor B Cost	100%
Arm Cost	100%
Pole Cost	100%

BOLD

Pole Weight	33,700 lbs
Arm Weight	11,100 lbs
GL Moment	4,650 ft-K
Foundation Size	6.0 ft x 22 ft
Polo Cost	070/

Pole Cost	82%
Arm Cost	132%
Anchor B Cost	82%
Foundation Cost	<u>75%</u>
Total Cost	93%

Typical 345-kV Tangent Structure

2-1590 ACSR Falcon

Span Length: 1100'

NESC Medium

A Cost Competitive BOLD Solution

Traditional

Tower Weight31,000 lbsUplift force114 kipsFoundation Size4.0 ft x 13ft

Tower Cost100%Foundation Cost 100%Total Cost100%

BOLD

Tower Weight25,700 lbsUplift force94 kipsFoundation Size4.0 ft x 12ft

Tower Cost82%Foundation Cost 92%Total Cost86%

BOLD

Typical 345-kV Tangent Structure

2-1590 ACSR Falcon

Span Length: 1200'

NESC Medium

<u>Higher</u> Capacity

• Up to <u>60%</u>

• Can avoid costly and

complex compensation

<u>Mitigates</u> <u>EMF</u> Effects

• Up to <u>50%</u>

BOLD

Efficiency never looked so good.®

Presentation to PJM TEAC – Special Session, Order 1920 September 6, 2024

Thank You!

David E. Rupert President & CEO 1 Riverside Plaza Columbus, OH 43215

614-716-2529 (office) 614-302-8297 (cell) derupert@aep.com vimeo.com/boldtransmission

Learn more at: BOLDTransmission.com

