

Locational Marginal Emissions Introduction

Prepared for PJM Emerging Technologies Forum

June 14, 2022

REsurety Introduction

REsurety Overview

Company Overview

- Founded in 2012 with focus on hedging tools to support project finance for renewables
- Expertise in analysis of value (\$/MWh and tons/MWh) and variability in clean energy
- In-house atmospheric science and power markets modeling teams
- 7,000+ MW transactions supported in US and Australian wholesale electricity markets
- Today, offer software and data solutions in addition to hedging and advisory services

REsurety Overview and Product Suite

Locational Marginal Emissions

Background and case studies

Background: The Need for Better Emissions Data

The Challenge

Renewable energy is a means to an end: **decarbonization**.

To achieve that end, we must optimize in the relevant units: **tons of carbon, not MWh of electricity.**

Access to accurate, high-resolution consequential carbon emissions data **has been a barrier** to carbon-based decision making.

Google

"To measure the impact of our projects, we need to be able to evaluate which source of electricity production this new asset would replace. <u>'Marginal</u> <u>emissions' is often viewed as the best metric to do this... However, as of</u> <u>today, this information is generally unavailable</u>" Feb '21

"...not all renewable energy is created equal. Two projects with identical transactional details can have enormously different impacts. <u>Some renewable</u> energy projects displace more fossil fuels than others." – Oct '20

"The REC from an additional megawatt-hour of wind generation in wind-saturated West Texas has the same "value" as a megawatt-hour of new solar in fossil-intensive Alabama<u>, even though the amount of carbon emissions</u> <u>avoided by each are radically different</u>." - Feb '21

Background: The Need for Better Emissions Data

The Challenge

Renewable energy is a means to an end: **decarbonization**.

To achieve that end, we must optimize in the relevant units: **tons of carbon, not MWh of electricity.**

Access to accurate, high-resolution consequential carbon emissions data **has been a barrier** to carbon-based decision making.

The Solution: Locational Marginal Emissions

"LMEs are creating a market-leading opportunity for Akamai to be more accurate regarding our emissions reduction claims." - Akamai Technologies

"Granular carbon emissions data is mission critical in assisting Broad Reach Power more efficiently reduce carbon emissions while increasing grid reliability; REsurety provides that data." - Broad Reach Power

Note: REsurety and our customers were excited to see PJM's release of nodal emissions data (LMEs) last year. We encourage other ISOs to release this data as well.

Approach: Locational Marginal Emissions Methodology

Marginal Emissions Background: The Importance of Timing

During an example hour, gas is on the margin. Incremental renewables or storage dispatch displaces gas, abating 0.4 tonnes of CO_2 per MWh.

Marginal Emissions Background: The Importance of Timing

During a different hour, coal is on the margin. During this hour, incremental renewables or storage dispatch displaces coal, abating more than double the CO₂ per MWh.

Marginal Emissions Background: The Importance of Transmission

Transmission also matters. In a **wind**-heavy **export**-constrained region, marginal emissions can fall to 0, even when system demand is relatively high.

Supply curve and marginal emissions scatter

In the absence of a centralized carbon tax, marginal emissions rates don't always correlate with price.

Before and After LME

Status Quo: Limited differentiation, high bias

Any and all wind farms in Texas displace: **0.602 Tons** per MWh

Any and all solar projects in Texas displace: **0.620 Tons** per MWh

Reality powered by LMEs: Dramatic project differentiation

Average 2018-19 LME of Renewables Across ERCOT

Previously existing tools are biased high and miss project-specific variability

Case Study: Nodal abatement in ERCOT

We calculated the avoided carbon from every wind and solar project operating in ERCOT in 2018 and 2019, and found a wide range of impact.

Average 2018-19 LME of Renewables Across ERCOT

Case Study #1: Corporate Wind Farm and Data Center

As a case study for a large corporate, REsurety used LME data to measure the avoided emissions from a particular wind farm in west Texas. We then compared that to the incremental emissions caused by a hypothetical data center near Dallas that consumed exactly the same total amount of electricity.

REsurety

Case Study #1: Corporate Wind Farm and Data Center

We found that the wind farm avoids far fewer tons of carbon than are emitted by the data center, even though they match in annual MWhs. This is due to both timing of production and location on the grid.

Case Study #1: Corporate Wind Farm and Data Center

Over the 3.5 year period, the cumulative gap between the emissions caused by the data center and emissions abated by the wind farm was ~325,000 tons. REsurety is now working with this corporate to procure energy from new projects and technologies that will have the biggest carbon impact.

Case Study #2: Comparison Between Two Solar Projects

Differences in carbon abatement between two far-west solar facilities highlight the role of transmission in carbon value

The Solar 2 project is abating half the amount of carbon as the Solar 1 project

REsurety Offering: Tools and Interface

Sample Emissions Report

Project-specific reports include detailed project abatement information for wind, solar, or storage projects.

Sample Emissions Report Details

Project-specific reports include detailed project abatement information for wind, solar, or storage projects.

Locational Marginal Emissions

Use Cases

Use case #1: corporates and investors measuring the carbon emissions value of their projects on the grid.

Lines colored by project performance in 2018 (green = highest-abating, red = lowest-abating). High-abating projects in one year tend to be among the best performers in following years, indicating year-to-year stability in relative abatement value among projects.

Sell Side: Market the carbon impact of the project as a differentiating feature.

Buy Side: Identify the projects with both high returns and high impact, and set up clients well for future disclosure requirements (ex. SEC, GHG revisions)

	Project Name	IRR	Carbon Score (Rank)
Identify Solar Plant A as having the largest carbon impact for each dollar invested	Solar Plant A	X.X%	97th percentile
	Storage Plant B	X.X%	23th percentile
	Wind Project C	X.X%	51st percentile
	Wind Project D	X.X%	34th percntile

Use case #3: measure the carbon impact of storage through hourly, nodal emissions impact data.

Example analysis for actual ERCOT storage project

Use case #4: Optimize dispatchable resources (like storage) to maximize carbon abatement.

Dispatch optimized for carbon abatement

Notes:

LME.

For all components, carbon emitted / abated is normalized by total discharge MWh. Loss LME calculated as: LME Charging * Loss MWh / Discharge MWh

Discharge pattern determined by TB1 ("Top / Bottom 1") algorithm with perfect foresight, in which the battery charges in the single hour with the lowest LME and discharges in the hour with highest

Locational Marginal Emissions

Carbon Accounting Questions

Carbon Accounting: Consolidating Standards

Voluntary carbon accounting, disclosure, and target-setting are increasingly consolidating around three anchor standards. This includes the GHG Protocol for accounting. The SEC's recent proposed rule incorporates large portions (though not all) of these anchor standards.

SCIENCE BASED TARGETS DRIVING AMBITIOUS CORPORATE CLIMATE ACTION				
TCFD TASK FORCE ON CLIMATE-RELATED FINANCIAL DISCLOSURES	Disclosure	ISO 14064, CDP, CDSB, GRI, IR, SASB, IFRS, IOSCO, PCAF,		
GREENHOUSE GAS PROTOCOL	Accounting	ISO 14064, PCAF,		

Adapted from: https://watershed.com/blog/tcfd-standards-what-companies-need-to-know

Carbon Accounting: Challenges with GHG Protocol

While the GHG Protocol Scope 2 Guidance provides a common framework for corporate GHG accounting, it fails to achieve two key objectives we would expect from such a framework:

- Allocate total emissions: The GHG Protocol allows corporates to reduce their footprint to account for purchased RECs. To avoid double-counting, *all* entities must apply an adjusted "residual mix" emissions rate to their non-REC consumption. <u>Since</u> residual mix rates aren't available in practice, total inventories don't match total emissions and there is systemic over-counting.
- Incentivize emissions-reducing decisions: Since corporate GHG footprints are based on average emissions rates, and all RECs are treated equally, <u>interventions</u> designed to reduce maximize emissions reductions are often not accurately reflected in <u>footprints.</u>

Carbon Accounting: LMEs and the GHG Protocol

A carbon accounting mechanism based on LMEs could both allocate total emissions and provide better incentives for decarbonization. However, the GHG Protocol only allows LMEs to be used in limited ways:

- Location-Based Scope 2: The GHG protocol expressly forbids use of marginal emissions rates with the location-based method for Scope 2 accounting
- Market-Based Scope 2: While marginal emissions rates aren't expressly prohibited for the market-based method for Scope 2 accounting, they aren't included in the data hierarchy for acceptable emissions rates.
- **Optional Avoided Emissions Reporting:** we believe LMEs are consistent with optional avoided emissions reporting as defined by the GHG Protocol.

Note: the GHG Protocol is silent on *timing* of generation / procurement. It provides no incentive for other initiatives, such as 24/7 matching.

Contact us carbon@resurety.com

or visit resurety.com to learn more

Disclaimer

DISCLAIMER: This presentation contains information related to REsurety, Inc. and the commodity interest derivatives services and other services that REsurety, Inc. provides. Any statements of fact in this presentation are derived from sources believed to be reliable, but are not guaranteed as to accuracy, nor do they purport to be complete. No responsibility is assumed with respect to any such statement, nor with respect to any expression of opinion which may be contained herein. The risk of loss in trading commodity interest derivatives contracts can be substantial. Each investor must carefully consider whether this type of investment is appropriate for them or their company. Please be aware that past performance is not necessarily indicative of future results. Derivatives services and other services that REsurety, Inc. provides.