

Impact of Station Service Rates on Start-Up Cost Calculations

Tom Hauske Cost Development Sub-Committee September 28, 2023

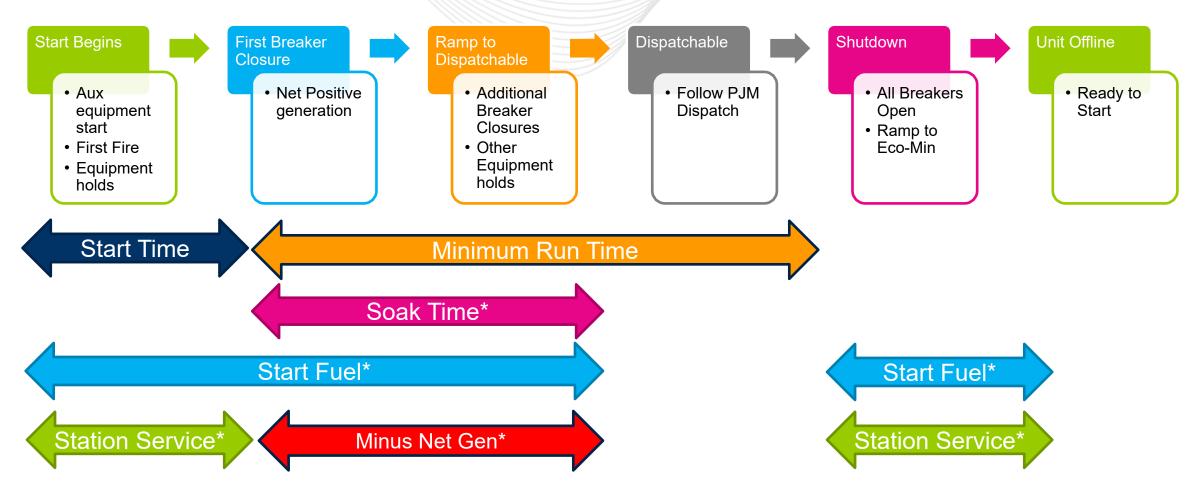
Start-Up Cost Changes Effective June 1, 2023

- For units without a soak process (combustion turbines, reciprocating engines), Start-Up Cost include costs from PJM notification to first breaker close and from last breaker open to shutdown (Status Quo).
- For units with a soak process (steam, combined cycle, nuclear) Start-Up Cost include costs from PJM notification to dispatchable output and from last breaker open to shutdown.

M15 Section 2.4.1 Start-Up Cost Equation

```
Start - upCost (\$/Start) =
```

[StartFuel (MMBtu/(Start))*TotalFuelRelatedCost(\$/MMBtu)*PerformanceFactor]
+ [StationService(MWh) *StationServiceRate(\$/MWh)] + StartMaintenanceAdder(\$/Start) .


Where

TotalFuelRelatedCosts =

 $Fuel Costs + SO_2 Allowance Cost + CO_2 Allowance Cost + NO_x Allowance Cost + Maintenance Adder + Operating Cost Adder + Cost + Cost$

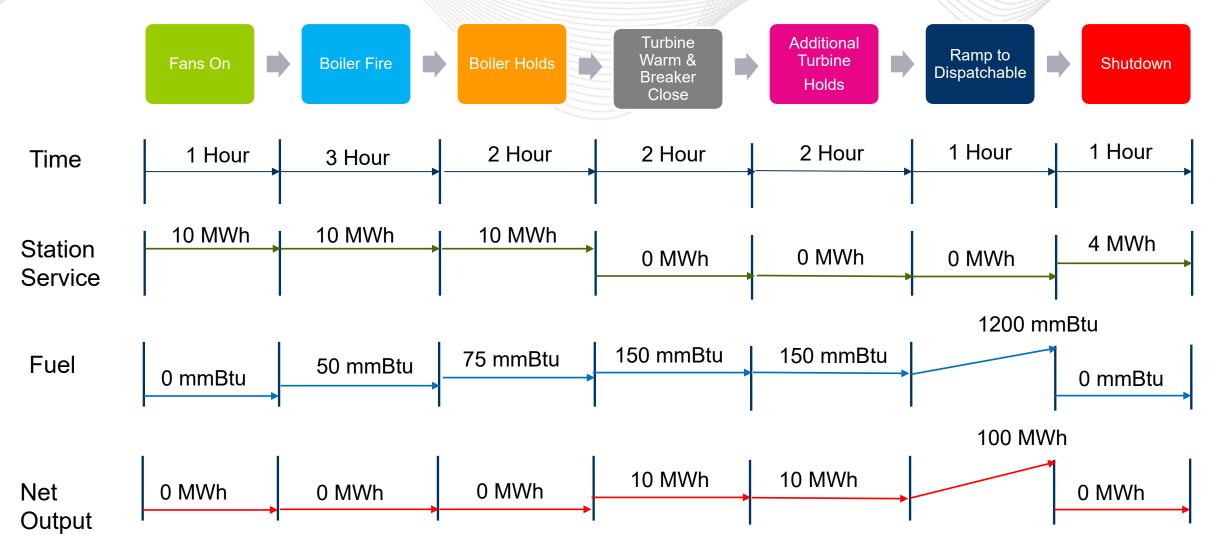
Generic Unit with Soak Process

^{*} Duration limited to unit specific start and soak time or M15 defaults

Start-up Cost Calculation Comparison

- Start-Up Costs were calculated for a Steam Unit and a Combined Cycle Unit using both a 12 Month Station Service Average and a 3 Month Station Service Average
- PJM is demonstrating this calculation to show the impact of a change in the Station Service Rate on the Start-Up calculation. It does not indicate that PJM favors a 3 Month Average over a 12 Month Average

www.pjm.com | Public 5



Steam Unit Start-Up Example – 12 Month Average

- 100 MW Steam Unit
- Fuel Cost = \$4/mmBtu
- Performance Factor = 1.02
- Allowance Cost = \$0.10/mmBtu
- Maintenance Adder = \$0.25/mmBtu
- Operating Cost Adder = \$0.05/mmBtu
- Station Service Rate = \$55.84/MWh (12 Month Average)
- Unit Specific Start Time = 8 Hour
- Unit Specific Soak Time = 3 Hour

Steam Unit Start-Up Example

Total Fuel Related Cost = \$4/mmBtu + \$0.10/mmBtu + \$0.25/mmBtu + \$0.05/mmBtu = \$4.40/mmBtu

- Start Fuel = (50mmBtu/hr * 3 hr) + (75mmBtu/hr * 2 hr) + (150mmBtu/hr * 2 hr) + (150mmBtu/hr * 2 hr) + (1200mmBtu/hr * 1 hr) + (0mmBtu/hr * 1 hr) = 2,100mmBtu
- Station Service = (10 MWh * 1 hr) + (10MWh * 3 hr) + (10MWh * 2 hr) (10MWh * 2 hr) (100MWh * 1 hr)
 + (4MWh * 1 hr) = -76 MWh

Steam Unit Start-Up Example - 12 Month Average

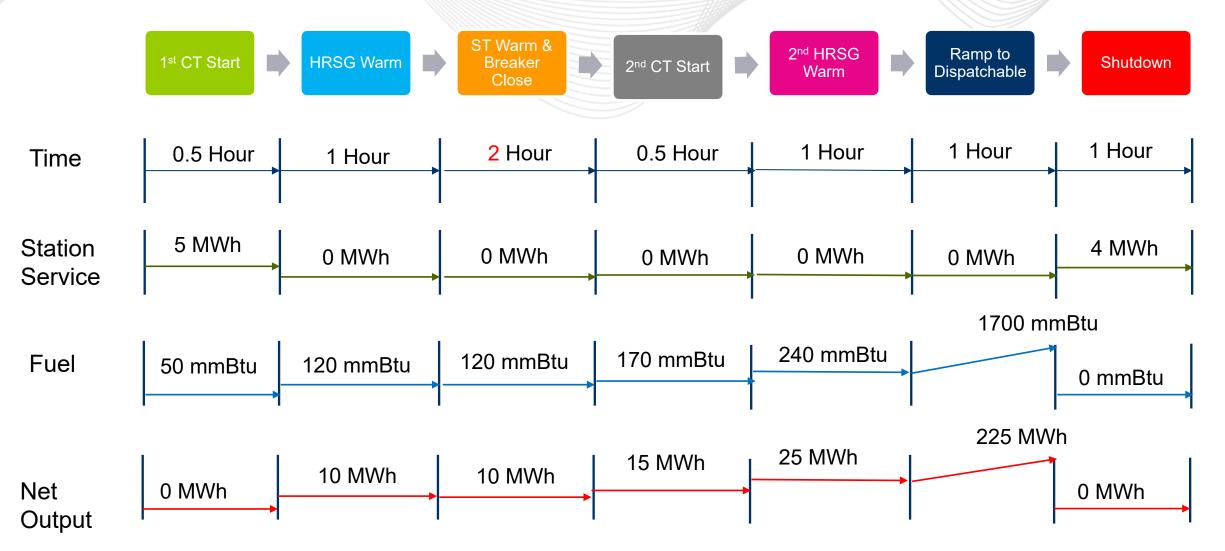
```
Start-upCost\ (\$/Start)= [StartFuel\ (MMBtu/(Start))*TotalFuelRelatedCost(\$/MMBtu)*PerformanceFactor] +[StationService\ (MWh)\ *StationServiceRate\ (\$/MWh)]\ +\ StartMaintenanceAdder\ (\$/Start)\ \cdot
```

Start-Up Cost = (2,100mmBtu * \$4.40/mmBtu * 1.02)
+ (-76 MWh * \$55.84/MWh)
+ \$0/Start
= \$5,180.96/Start

Steam Unit Start-Up Example – 3 Month Average

- 100 MW Steam Unit
- Fuel Cost = \$4/mmBtu
- Performance Factor = 1.02
- Allowance Cost = \$0.10/mmBtu
- Maintenance Adder = \$0.25/mmBtu
- Operating Cost Adder = \$0.05/mmBtu
- Station Service Rate = \$24.04/MWh (2023 Q3 3 Month Average)
- Unit Specific Start Time = 8 Hour
- Unit Specific Soak Time = 3 Hour

Steam Unit Start-Up Example – 3 Month Average


```
Start-upCost\ (\$/Start)= [StartFuel\ (MMBtu/(Start))*TotalFuelRelatedCost\ (\$/MMBtu)*PerformanceFactor] + [StationService\ (MWh)\ *StationServiceRate\ (\$/MWh)]\ +\ StartMaintenanceAdder\ (\$/Start)\ \cdot
```

- Start-Up Cost = (2,100mmBtu * \$4.40/mmBtu * 1.02)
 - + (-76 MWh * \$24.04/MWh)
 - + \$0/Start
 - = \$7,597.76/Start

- 2 X1 Combined Cycle
- (2) 100 MW CTs
- 100 MW ST
- Fuel Cost = \$4.00
- Performance Factor = 1.20
- Allowance Cost = \$0.10/mmBtu
- Maintenance Adder = \$2000/CT/Start
- Station Service Rate = \$55.84/MWh (12 Month Average)
- Unit Specific Start Time = 0.5 Hour
- Unit Specific Soak Time = 4.5 Hours

Combined Cycle Unit Start-Up Example

Combined Cycle Unit Start-Up Example

Total Fuel Related Cost = \$4/mmBtu + \$0.10/mmBtu
 = \$4.10/mmBtu

- Start Fuel = (50mmBtu/hr * 0.5 hr) + (120mmBtu/hr * 1 hr) + (120mmBtu/hr * 1 hr) + (170mmBtu/hr * 0.5 hr) + (240mmBtu/hr * 1 hr) + (1700mmBtu/hr * 1 hr) + (0mmBtu/hr * 1 hr) = 2,290mmBtu
- Station Service = (5 MWh * 0.5 hr) (10MWh * 1 hr) (10MWh * 1 hr) (15MWh * 0.5 hr) (25MWh * 2 hr) (225MWh * 1 hr) + (4MWh * 1 hr) = -271 MWh

pim Combined Cycle Unit Start-Up Example – 12 Month Average

```
Start - upCost (\$/Start) =
   [StartFuel (MMBtu/(Start))*TotalFuelRelatedCost($/MMBtu)*PerformanceFactor]
+ [StationService (MWh) *StationServiceRate ($/MWh)] + StartMaintenanceAdder ($/Start) .
```

Start-Up Cost = (2,290mmBtu * \$4.10/mmBtu * 1.02) + (-271 MWh * \$55.84/MWh) + (\$2000/Start * 2 Starts) = \$-1,555.86/Start Since Start-Up Cost cannot be less than zero = **\$0/Start**

Combined Cycle Unit Start-Up Example – 3 Month Average

- 2 X1 Combined Cycle
- (2) 100 MW CTs
- 100 MW ST
- Fuel Cost = \$4.00
- Performance Factor = 1.20
- Allowance Cost = \$0.10/mmBtu
- Maintenance Adder = \$2000/CT/Start
- Station Service Rate = \$24.04/MWh (2023 Q3 3 Month Average)
- Unit Specific Start Time = 0.5 Hour
- Unit Specific Soak Time = 4.5 Hours

Combined Cycle Unit Start-Up Example – 3 Month Average

```
Start-upCost\ (\$/Start)= [StartFuel\ (MMBtu/(Start))*TotalFuelRelatedCost\ (\$/MMBtu)*PerformanceFactor] + [StationService\ (MWh)\ *StationServiceRate\ (\$/MWh)]\ +\ StartMaintenanceAdder\ (\$/Start)\ \cdot
```

Start-Up Cost = (2,290mmBtu * \$4.10/mmBtu * 1.02)
 + (-271 MWh * \$24.04/MWh)
 + (\$2000/Start * 2 Starts)
 = \$7,061.94/Start

CDS Chair:
Nicole Scott,
Nicole.Scott@pjm.com

CDS Secretary:
Heather Reiter,
Heather.Reiter@pjm.com

Presenter/SME:
Thomas Hauske,
Thomas.Hauske@pjm.com

Member Hotline

(610) 666 - 8980

(866) 400 - 8980

custsvc@pjm.com