

Reactive Capability of Hybrid Resources

Darrell Frogg Sr. Engineer, Generation

DIRS December 7, 2020

Four types of solar-storage hybrids

	Can charge from grid (open loop)	Cannot charge from grid (closed loop)
Shared Inverters (DC- coupled)		
Separate Inverters (AC- coupled)		

Traditional Generator MW/MVAR Pairing

	MW	Minimum MVAR	Maximum MVAR
Point 1	0	-50	50
Point 2	15	-45	45
Point 3	30	-40	40
Point 4	45	-35	35
Point 5	60	-30	30
Point 6	75	-25	25
Point 7	90	-20	20
Point 8	100	-15	15

- Analysis uses the MW output of the resource to determine where the MVAR output
- This is very straightforward for traditional resources or even shared inverters
- A singular Min/Max MVAR pair for each MW output

Traditional D-Curve

Inverter-Based Reactive Curve

www.pjm.com | Public

Shared Inverter Capability Curve

	MW	Min MVAR	Max MVAR
Point 1	-100	-33	33
Point 2	-70	-38	38
Point 3	-35	-41	41
Point 4	-10	-42	42
Point 5	0	-42	42
Point 6	35	-41	41
Point 7	70	-38	38
Point 8	100	-33	33

Example of inverter-based DC-coupled solar-storage hybrid

Ex.: Solar-Storage Separate Inverters (AC-coupled) Hybrid

PJM 230 kV

"pjm"

Conservative Reactive Capability

	MW	Min MVAR	Max MVAR	Example of output at battery terminals	Example of output at solar terminals
Point 1	-40	-40	40	-40	0
Point 2	-30	-36	36	-40	10
Point 3	-20	-32	32	-40	20
Point 4	-10	-30	30	-40	30
Point 5	0	-28	28	-40	40
Point 6	35	-23	23	-40	75
Point 7	60	-20	20	-40	100
Point 8	100	-33	33	0	100

Example of inverter-based AC-coupled solar-storage hybrid with 100 MW solar and 40 MW battery operated as a single combined unit

Proposed Testing Summary

Unit Type	MW Output	MVAR Output	Test Duration
DC-COUPLED SOLAR-	MAX	MAX LAG	WHEN LIMIT REACHED
BATTERY HYBRIDS	MAX	MAX LEAD	WHEN LIMIT REACHED
Max MW Output = fully	ZERO	MAX LAG	WHEN LIMIT REACHED
discharging	ZERO	MAX LEAD	WHEN LIMIT REACHED
Min MW Output = fully	MIN	MAX LAG	WHEN LIMIT REACHED
charging	MIN	MAX LEAD	WHEN LIMIT REACHED
AC-COUPLED SOLAR-	MAX	MAX LAG	WHEN LIMIT REACHED
BATTERY HYBRIDS	MAX	MAX LEAD	WHEN LIMIT REACHED
Max MW Output = fully	MAX INVERTER OPERATING		
discharging	NET MW POINT	MAX LAG	WHEN LIMIT REACHED
Min MW Output = fully	MAX INVERTER OPERATING		
charging	NET MW POINT	MAX LEAD	WHEN LIMIT REACHED
Max inverter operating point =	ZERO	MAX LAG	WHEN LIMIT REACHED
solar at full output and battery	ZERO	MAX LEAD	WHEN LIMIT REACHED
at full charging	MIN	MAX LAG	WHEN LIMIT REACHED
*Additional test points may be			
required if these do not capture the		MAXIEAD	
most restrictive capability scenarios.	MIN	MAX LEAD	WHEN LIMIT REACHED

Benefits of Simplified Conservative Approach

No additional telemetry required of resources

Less computational stress and complexity for EMS analysis

Allows plant controller to do the work

 Controller is already coordinating resource outputs to prevent any GSU or inverter overloads

Facilitator: Scott Baker, scott.baker@pjm.com

Secretary: Hamad Ahmed, hamad.ahmed@pjm.com

Presenter: Darrell Frogg, darrell.frogg@pjm.com

Reactive Capability of Hybrid Resources

Member Hotline (610) 666 – 8980 (866) 400 – 8980 custsvc@pjm.com