

Forecast Methodology Updates

Load Analysis Subcommittee September 3, 2021

Andrew Gledhill Sr. Analyst Resource Adequacy Planning

Methodology Updates

- Sector Models
- Refinements to final model specification

- Pulled in Real Output as an additional driver
 - Economics for each zone is a weighted combination of real output, employment, and working-age population (previously just the latter two)
- Changes in Commercial model that allow for different Heat+Cool and Other for each zone based on model fit.
 - Previously was just a share down of energy based on Census division based end-use values

Sector Model - Industrial

- Brought in new sector-specific industrial intensity values that are then weighted together based on each zone's composition
 - Previously was a national intensity measure

- Economic real output measured at the zonal level but across more industries
- Intensity at the national level, but weighted for each zone based on its own industrial mix per the industries laid out above
- Industries
 - Natural Resources, Mining
 - Construction
 - Manufacturing Machinery
 - Manufacturing Transportation equipment
 - Manufacturing Chemicals; Energy; Plastics & Rubber
 - Manufacturing Electronic & Electrical
 - Manufacturing Food; Beverage & Tobacco
 - Manufacturing Furniture & Misc.
 - Manufacturing Metals & Mining
 - Manufacturing Textile; Fiber & Printing

Heat, Cool, Other

- Heat, Cool, and Other are retained from sector models as before
- Other still used as input to calibrate non-weather sensitive load
- Heat and Cool now used to calibrate observed changes in weather slopes.

* Summer weather parameter is a weighted combination of daily Max THI, average afternoon THI, average morning THI, and average THI lagged 1 day

Cooling Spline – Load vs Weather

Cooling Overview

- Segments of spline are modeled against Cool index produced by Sector model process.
- Cooling response in the model changes over time to reflect the evolving state of economic and end-use factors (saturation/efficiency of cooling).

* Winter weather parameter is a weighted combination of wind-adjusted temperature at the time of the peak, daily Min wind-adjusted temperature, average daily wind-adjusted temperature, and average daily wind-adjusted temperature lagged 1-day

Heating Spline – Load vs Weather

—1998 **—**2006 **—**2020 **—**2025

Heating Overview

- Segments of spline are modeled against Heat index produced by Sector model process.
- Heating response in the model changes over time to reflect the evolving state of economic and end-use factors (saturation/efficiency of heating).

- Handling of Non-Weather Sensitive Load
 - Interacted with day of the week by month
 - Jan_Monday_NWS Jan_Tuesday_NWS Jan_Wednesday_NWS Jan_Thursday_NWS Jan_Friday_NWS Jan_Saturday_NWS Jan_Sunday_NWS

Dec_Monday_NWS Dec_Tuesday_NWS Dec_Wednesday_NWS Dec_Thursday_NWS Dec_Friday_NWS Dec_Saturday_NWS Dec_Sunday_NWS

- Interacted with holidays

. . .

- Time trend variables
 - One for each month
 - Jan_Trend

. . .

Dec_Trend

- Attempt to capture trends in load not accounted for in model variables
 - Can be thought of similar to including an intercept in a Diff/Diff model framework

www.pjm.com | Public

Summer Model Accuracy – 10CPs

 Solve model with current economics/end-use given actual weather

Summer Model Accuracy – Seasonal Peak

 Goal of model is to determine the seasonal peak, so alternatively can solve for how actual peaks compare to what model would solve for given knowledge of the seasonal weather

Winter Model Accuracy – 10CPs

 Solve model with current economics/end-use given actual weather

 Goal of model is to determine the seasonal peak, so alternatively can solve for how actual peaks compare to what model would solve for given knowledge of the seasonal weather

Still to consider

- Estimation period
 - Discussed in separate presentation
- Forecast adjustments
- Any additional stakeholder input

SME/Presenter: Andrew Gledhill, Andrew.Gledhill@pjm.com Load_Analysis_Team@pjm.com

Forecast Methodology Updates

