Utility Protection Practices in PJM

Terry Fix Protective Relay Systems Consultant Dominion Energy Past Chair of PJM Relay **Subcommittee**

Typical Electrical Power System Single-Line Diagram

Decentralized Power System

Transmission Protection Characteristic

MHO relay characteristic

The characteristic of a mho impedance element, when plotted on a R/X diagram, is a circle whose circumference pass through the origin.

Transmission Protection Characteristic

Pilot Protection Scheme with Communication

Conventional implementation of accelerated scheme

Current-Only Pilot Schemes

Compare current information

- Phase comparison
- Differential

Transmission Breaker

Transmission Current and Voltage Sensing Devices

CAPACITIVE VOLTAGE TRANSFORMER

 CVT converts high transmission voltage to standard, low and easily measurable voltage which is used for metering, protection, control of system.

Transmission Protective Relays

Substation Control House

Transmission Substation

Transmission Power Transformer

Windings of a Power Transformer

Winding Damage due to Fault Current

Equipment Damage

Large Power Plants

2003 Northeast Blackout

NERC Common Failure Modes

Common Equipment Failures

Transmission Reclosing Practices

Breaker Reclosing Cycle Temporary Transmission Fault

Breaker Reclosing Cycle Temporary Transmission Fault

Breaker Reclosing Cycle Permanent Transmission Fault

Fault Types

Basic Protective Devices

Fuse

Recloser

Fuses

Basic sectionalizing device
One time operation
Needs to be replaced
Inverse time characteristic
Minimum melt time
Total clear time

Reclosers

Basic sectionalizing device
Multiple operations
Inverse time characteristic
Fast "A" curve
Time delayed "B" curve

Types of Relays

Electromechanical

Microprocessor (Schweitzer Relay

Protective Device Coordination

- Proper timing and operational sequencing of protective devices
- Coordination minimizes customer outages while clearing circuit faults

Coordination Curve Fuse, Recloser, Relay

DG Protection Issues Reduction of Reach

$$V_r = I_{nw} Z_{23} + (I_{nw} + I_{dg}) Z_{3a}$$

The impedance measured by the relay R:

REDUCES THE REACH!

DG Protection Issues Short-Circuit Current

SCENARIO 1: Fault at point 'a'

$$I_f = I_{nw} = \frac{1}{|Z_{th}|}$$

 Z_{th} is the inner impedance of the Thevenin representation of the network in p.u.

$$I_f = I_{nw} + I_{dg}$$

AMPLITUDE!

SCENARIO 2: Fault at 'b2'

With DG: Reverse current flow at the directional relay 'R'

DIRECTION!

DG Protection Issues Voltage Profile

Distributed generation impacts the voltage profile at local buses.

DG Protection Issues Reverse Power Flow

Reverse Power Flows cause issues with automatic tap changers.

Typical Distribution Substation Construction

Equipment Damage

Equipment Damage

Personal Safety

Distribution Reclosing Practices

Breaker Reclosing Cycle Temporary Distribution Fault

Breaker Reclosing Cycle Permanent Distribution Fault

How Does DER Integrate into This System

-NREL Std 1547: Interconnection Is The Focus Area Distributed Interconnection Electric Resource Power (DR) System System unit (EPS) IEEE Std 1547: Interconnection system requirements & specifications, and test requirements & specifications 39

OVERVIEW

- IEEE 1547 series are standards for interconnecting distribution resources with electric power systems which helps utilities tap surplus electricity from alternative sources.
- The standard establishes technical requirements for electric power systems interconnecting with distributed generators such as fuel cells, photovoltaic, micro-turbine, reciprocating engines, wind generators, large turbines, and other local generators.

IEEE 1547: -What's in it?

> Interconnection technical specifications:

- General requirements
- Response to Area EPS
- Abnormal conditions
- Power Quality
- Islanding

UL 1741:

A Companion to IEEE 1547

➢ UL 1741 is a standard for inverters

- Provides a basis for certification of inverter-based systems, sometimes called "pre-certified"
- ➢ Goes beyond IEEE 1547 to include:
 - Construction, materials, wiring, component spacing, etc.
 - Protection against risks of injury to persons
 - Output characteristics and utility compatibility
 - Ratings and labeling
 - Specific DR Tests for various technologies (PV, Wind, microturbines, fuel cells and engines)

Questions?