Single Period Integer Relaxation Examples

Melissa Maxwell
Anthony Giacomoni
March 5, 2018

Separate Dispatch and Pricing Runs

- Make no modifications to resource

Dispatch Run parameters

- Determine desired dispatch points
- Do not calculate prices

Pricing Run

- Modify resource parameters
- Calculate prices

Example \#1

- Load equals 455 MW
- Fixed costs (start-up and no-load) are considered in setting the price.
- Assume all resources are eligible for integer relaxation treatment
- Note: Offline resources do not participate in pricing

Example \#1: Offer Blocks (MW) \& Fixed Costs Any resource that is "committed" must run at least at its minimum

The Commitment and Dispatch Run: Example \#1

Pricing Run Offer Modifications for Example \#1

- Allow resources to be partially committed for pricing calculations:
- Equivalently, resources are allowed to be fully dispatchable between 0 and their economic maximums.
- Start-up and No-load costs of X and Y are considered in setting the price.
- Equivalently, the bid blocks of Resources X and Y can be modified to incorporate the proportional start-up and no-load costs.
- For example, under integer relaxation with a single offer block, in the pricing run the total offer cost of dispatching a resource is:

$$
\begin{aligned}
\text { Total Offer Cost }= & \text { Incremental Energy Cost } \times \text { Dispatch }+ \\
& \text { Startup Cost } \times \text { Commitment Status }+ \\
& \text { Noload Cost } \times \text { Commitment Status }
\end{aligned}
$$

Where:

$$
\text { Commitment Status }=\frac{\text { Dispatch }}{\text { Economic Maximum }}
$$

Pricing Run Offer Modifications for Example \#1

- As a result, the total offer cost of dispatching a resource in the pricing run can be rewritten as:

Total Offer Costs $=$ Incremental Energy Cost \times Dispatch +

$\frac{\text { Noload Cost }}{\text { Economic Maximum }} \times$ Dispatch

- A resource's equivalent offer is equal to the sum of all three components in the boxes above.

Pricing Run Equivalent Offers for Example \#1

Pricing Run Integer Relaxation LMP: Example \#1

```
Load = 455 MW
```

\$/MWh

Load $=455$ MW
- The price is set by the modified
block 1 of Y.
- Integer Relaxation LMP =
\$233/MWh

- The integer relaxation LMP is set by the first block of Resource Y, which includes its start-up and no-load costs in the price
- The dispatch MWs for all resources come from the dispatch run where Resource X and Y incur their full start-up and no-load costs
- Resource Y will need a make-whole payments since it is only recovering part of its start-up and no-load costs through the price since it is not being dispatched at its economic maximum

The Integer Relaxation LMP is calculated at $\$ 233 / \mathrm{MWh}$.

Asset	Commit.	Dispatch $\mathbf{(M W)}$	EcoMax $\mathbf{(M W)}$	Total Offer Cost (\$)	Payment $\mathbf{(\$)}$	MWP $\mathbf{(\$)}$	LOC $\mathbf{(\$)}$
\mathbf{W}	On	260	260	13,270	60,580	0	0
\mathbf{X}	On	145	180	38,845	33,785	5,060	820
\mathbf{Y}	On	50	150	15,000	11,650	3,350	0

Both X and Y receive a make-whole payment to make them whole to their total offer cost.
In addition, X receives a LOC payment since at X's offer prices of $\$ 60-\$ 65 / M W h$, it would want to produce at its economic maximum at a $\$ 233 / M W h$ clearing pricing since it would make a profit of $\$ 820$.

Example \#2

- Load equals 455 MW
- Fixed costs (start-up and no-load) are considered in setting the price.
- Assume all resources are eligible for integer relaxation treatment
- Note: Offline resources do not participate in pricing

Example \#2: Offer Blocks (MW) \& Fixed Costs
Any resource that is "committed" must run at least at its minimum

The Commitment and Dispatch Run: Example \#2

Pricing Run Offer Modifications for Example \#2

- Allow resources to be partially committed for pricing calculations:
- Equivalently, resources are allowed to be fully dispatchable between 0 and their economic maximums.
- Start-up and No-load costs of X and Y are considered in setting the price.
- Equivalently, the bid blocks of Resources X and Y can be modified to incorporate the proportional start-up and no-load costs.

Pricing Run Equivalent Offers for Example \#2

Pricing Run Integer Relaxation LMP: Example \#2

- The integer relaxation LMP is set by the first block of Resource Y , which includes its start-up and no-load costs in the price
- The dispatch MWs for all resources come from the dispatch run where Resource X and Y incur their full start-up and no-load costs
- Resource Y will not need a make-whole payment since it is being dispatched to its economic maximum in the dispatch run and is recovering its entire start-up and no-load costs through the price

The Integer Relaxation LMP is calculated at $\$ 250 / \mathrm{MWh}$.

Asse \mathbf{t}	Commit.	Dispatch (MW)	EcoMax (MW)	Total Offer Cost (\$)	Payment $\mathbf{(\$)}$	MWP $\mathbf{(\$)}$	LOC $\mathbf{(\$)}$
\mathbf{W}	On	255	260	12,990	63,750	0	970
\mathbf{X}	On	100	180	36,000	25,000	11,00 0	3,880
\mathbf{Y}	On	100	100	25,000	25,000	0	0

Resource X receives a make-whole payment to make it whole to its total offer cost.
In addition, Resource W and X receive a LOC payment since at Resource W's and X's offer prices of \$50-\$56/MWh and $\$ 60-\$ 65 / \mathrm{MWh}$, they would want to produce at their economic maximums at a $\$ 250 / \mathrm{MWh}$ clearing pricing since they would make a profit of $\$ 970$ and $\$ 3,880$, respectively.

