

Energy and Reserve Co-optimization and Pricing Impacts of Reserve Shortages

Keyur Patel Sr. Lead Market Design Specialist Market Design & Economics EPFSTF March 16, 2022

Pricing Reserve Shortages

- The Real-Time Reserve markets are cleared using Operating Reserve Demand Curves (ORDCs).
- When the reserve requirement cannot be met, the reserve shortage is priced using the *penalty factor* from the ORDC.
- It sends a signal to market participants that as the reserve market clearing price reaches the penalty factor, reserve shortage may occur.

Penalty Factor Sets a price for being unable to meet the reserve requirement.

ORDC curve for Reserve Req.

Step 1 of the Demand Curve

- This represents the Reliability Requirement, which is generally the output of the largest online unit.
- The penalty factor for being short Step 1 is \$850/MWh.

Step 2 of the Demand Curve

- Adds 190 MW to the Reliability Requirement
- Also includes an Optional Adder MW that can be used to capture additional reserves that are scheduled for reliability reasons
- The penalty factor for being short Step 2 is \$300/MWh.

Reserve Product Interaction and Shadow Price Additivity

 Clearing Price represents procurement of the Synch Reserve requirement

- Clearing price represents procurement of the balance of the Primary Reserve Requirement not met by Synch Reserves
- Clearing price represents procurement of the balance of the 30 Min Requirement not met by Synch and Non-Synch Reserves

Reserve Substitution and Shadow Price Additivity

Impact of Multiple Simultaneous Reserve Shortages

- The ORDC represents the reliability value of a single product in a single location
 - Five separate ORDCs will exist to model reserves for each product/location combination
 - A sixth ORDC will be created for Sub-Zone 30 Minute Reserves, but will only be modeled when operationally necessary due to gas contingencies or other conservative operations
- When there are multiple reserve products with substitution, the ability of one product to meet the requirement for another increases the reliability value of the "multi-purpose" reserve products
 - Prices are calculated by adding shadow prices from the co-optimization

Examples – Co-Optimization of Energy and Reserve

- Sub-zone reserve requirements are not considered. Only RTO level reserve requirements are considered for simplicity.
- Energy dispatch time horizon is 5 minutes.
- All examples are for a snapshot of one RTSCED/LPC interval.
 - RTSCED/LPC only dispatches units and does not make any commitment decisions.
- Single step ORDCs with Penalty Cost of \$850.
- Ramp rates for all units are 1 MW/Min.
- Unit 3 has start-up plus notification time of 10 minutes

Determination of Reserve Clearing Prices

Clearing Price	Calculation
30-Minute Reserve =	Shadow Price of 30-Minute Reserve Requirement
Non-Synchronized Reserve =	Shadow Price of Primary Reserve Requirement + Shadow Price of 30-Minute Reserve Requirement
Synchronized Reserve =	Shadow Price of Synchronized Reserve Requirement + Shadow Price of Primary Reserve Requirement + Shadow Price of 30- Minute Reserve Requirement
Energy Price =	Shadow Price of Power Balance Constraint (includes Synchronized Reserve clearing price if marginal Energy MW comes from converting Reserve into Energy)

pjm	Example 1 - S	hortage in SR with I	no effect	on Ene	rgy Pri	се
Unit 1	200 MIA			Load		205 MW
Eco Max =	x = Initial MW			SR Req. PR Req.		16 MW
200 MW	So \$50/MWh Energy Off					20 MW
5 MW	10 MW	Sy Offer Initial MW		30-Min Re	s Req.	25 MW
	Unit 2 Eco Max = 100 MW	Unit 3		Total Cleared	Shadow	Clearing
		Eco Max = 50 MW		MW	Price	Price
195 MW			Energy	205	\$50	\$50
	20 MW		Sync Res	15	\$850	\$850
	10 MW	20 MW	Primary Res	s 25	\$0	\$0
	10 MW	10 MW	30-Minute			
Eco Min =	Eco Min = $0 MW$	Eco Min = 10 MW	Reserve	65	\$0	\$0
					ΨΟ	Ψ U
COLOR KEY: Er	nergy MW (Cleared) 🗾 Sy	nchronized Reserve (Cleared)	Secondary Reser	ve (Cleared)	NSR	(Cleared)

Examp pjm Energ	ole 2 - Shortage	in SR with Penalty	/ cost refl	ected in	n Ener Pri	gy ce
Unit 1	20/MWh 200 MW Energy Offer Linux					211 MW
ECO Wax = 200 MW/	\$50 th	MW		SK Keq.		
200 10100	10 A #10	Energy Offer Initial Attach		PR Req.		20 10100
4 MW		\$150/m		30-Min Res	s Req.	25 MW
	Eco Max = 100 MW	Unit 2		Total Cleared	Shadow	Clearing
		Eco Max = 50 MW		MW	Price	Price
196 MW			Energy	211	\$870	\$870
	20 MW		Sync Res	14	\$850	\$850
	10 MW	20 MW	Primary Res	5 24	\$0	\$0
Eco Min = 0 MW	Eco Min = 0 MW	10 MW Eco Min = 10 MW	30-Minute Reserve Req.	64	\$0	\$0
COLOR KEY: Er	nergy MW (Cleared)	ronized Reserve (Cleared)	Secondary Reser	ve (Cleared)	NSR	(Cleared)

Energy and Reserve Price Capping Rules

Price Capping for Reserves in Reserve Price Formation

- Administrative Price Capping will be implemented under Reserve Price Formation as below:
 - Synchronized Reserve Clearing price will be capped at 2*Penalty Factor (\$1,700).
 - Primary Reserve Clearing price will be capped at 1.5*Penalty Factor (\$1,275).
 - 30 Min Reserve Clearing Price will be capped at 1*Penalty Factor (\$850).
- Administrative Price Capping will be implemented in pricing run only.

Energy Price Caps

- Energy Component of LMP is capped at the energy offer cap + 2*Penalty Factor from first step of reserve ORDC
 - Max Energy Component \$2,000 + 2*\$850 = \$3,700
- Total LMPs can still rise above this level when factoring in locational congestion and loss prices.
- Administrative Energy Price cap will be applied in Pricing run only.

Contact

SME/Presenter:

Keyur Patel keyur.patel@pjm.com

Energy and Reserve Co-optimization and Pricing Impacts of Reserve Shortages

Member Hotline (610) 666 – 8980 (866) 400 – 8980 custsvc@pjm.com