

Optimizing Synchronous Condensers in PJM's Day-Ahead Energy Market Using a Hybrid Multiple Configuration Resource Model

Anthony Giacomoni, PJM Danial Nazemi, PJM Qun Gu, PowerGEM Boris Gisin, PowerGEM FERC Technical Conference July 9, 2024

PJM as Part of the Eastern Interconnection

- **1** Synchronous Condensers Overview
- **2** Multiple Configuration Resource Model
- **3** PJM Day-Ahead and Real-Time Market Clearing
- **4** Market Observations
- **5** Simulations
- 6 Questions

Synchronous Condensers Overview

A synchronous machine whose shaft is not attached to any driving equipment and is able to provide reactive power support

40+ CT and hydro units offer condensing capability in the Day-Ahead Energy Market.

Condensing Mode	Generating Mode
Consumes a small amount of real powerAble to provide synchronized reserves	Able to provide energy or reserves

Optimizing Synchronous Condensers Is Similar to Combined Cycle Units

Multiple Configuration Resource (MCR) Model: Allows for the individual modeling of each "operating mode" and its transitions

Multiple Configuration Resource (MCR) Model Development

2018

MISO market R&D department completed an Enhanced Combined Cycle (ECC) conceptual design.

2020

PJM, MISO and PowerGEM started a multiyear joint R&D project to implement the MCR model within PowerGEM's PROBE software.

- Started with MISO's MCR model
- Completely different implementation
 Doesn't use any commercial MIP solver

2023

PJM, MISO and PowerGEM presented details of the MCR model development at the June FERC Technical Conference: Overview of MISO and PJM Hybrid Multiple Configuration Resource Model Implementation within PROBE software (https://www.ferc.gov/media/qun-gu-powergem-clifton-park-ny)

Optimizing Combined Cycle Units in PJM's Wholesale Energy Markets Using a Hybrid Multiple Configuration Resource Model (<u>https://www.ferc.gov/media/anthony-giacomoni-pjm-</u> interconnection-audubon-pa)

PROBE MCR Model Key Features

- Most of the physical/economic operational characteristics are defined at the configuration level.
- Minimum run/down time can be defined at the component (turbine) level.
- **2** PROBE can simultaneously enforce minimum run/down times at both levels.
- **3** No limitation on the maximum number of configurations
- 4 Capable of modeling three offline thermal status (hot, intermediate or cold) with different startup cost/time
- **5** Hourly multiple-segment ramp curves defined by configurations
- 6 Advanced ancillary service modeling capabilities

Synchronous Condenser Mode Optimization

Condensing capable units can operate in two online modes:								
Conder	nsing	Generating						
Units provide additional input bids/	Transition cost/time f	rom Offline \rightarrow Condensing \rightarrow Generating						
characteristics for condensing:	Condensing energy u	sage (equivalent to a small negative generation)						

Condenser Parameters:

|--|

Synchronous Condenser Mode Optimization Design

Condensing mode optimization problem can be easily modeled with the MCR model.

- **Two online configurations** (Generating and Condensing)
- Condensing mode's EconMin = EconMax = – Energy Usage MW
- Units are not allowed to self-schedule to be in condensing mode.

Transition Table	Offline	Generating	Condensing
Offline		X	X
Generating	X		X
Condensing	x	x	

• Full Three Pivotal Supplier (TPS) test capability (can accommodate multiple-schedule bids)

First implementation of the MCR model in production in PROBE DA

Went live on Oct. 3, 2023 To date, there has been minimal impact on performance.

Use of PROBE DA in Day-Ahead Market Clearing

Provides unit commitment sug to aid Day-Ahead Mark	ggestions et operators	Performs a Three Pivotal Supplier (TPS) test for market power mitigation	Optimizes hydro pumped storage schedules								
High-performance		CONSIDERS:									
SCUC engine		trainte theusande of monitored	• All DA unit parameters								
 Does not use third-party solvers 	branches an	d contingencies	All DA unit parametersSubmitted transactions								
 Typically 1–5 minutes to solve 	 Network and Iterative load Ancillary sertion PAR optimization 	market-to-market flowgates I flow with marginal losses updates vices – system-wide and zonal ation	 Virtual bids including large volumes of up-to-congestion (UTC) transactions DFAX computed on the fly 								

www.pjm.com | Public

Synchronous Condenser Mode Determination Prior to Oct 3, 2023

1 Resource Scheduling and Commitment (RSC) engine chose the configuration for the resource.

- 2 Units committed in condensing mode by RSC went directly into the approved day-ahead case (bypassed PROBE DA).
- **3** Not fully transparent how these decisions were being made.

4 Often resources in condensing mode were losing money.

											ΗO	UR												PROBE DA Results
00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23	Oct 27 2023
· .				D			D	D	D	D	D		D		D	D	D	D	D	D	D	D	D	
R	R	R	R	R	R	R	R D	C R D	C R D	C R D	C R D	C R	C R D	C R	C R D	C R D	C R	C R	C R	C R ·	C R	C R	R	PROBE decommits unit (RSC committed unit for energy).
. .	. .			•			D	^	^	R ^	R ^	^	^	^	^	D	^ C					R		C PROBE commits unit to condensing mode from offline.
Ι.				d	d	d	d	d	d	d	d	d	d	d	d	d	С	d	d	A	d			
:		·		•	:	d d	d d	d d	d d	d d	d d	d d	d d	d d	d d	d d	C C	d d	d d	d d				R PROBE commits unit for energy
d	d	d	d	d	d	d	d	d	d	d	d	d	d	d	d	d	с	d	d	d	d	d	a	
d	d	d	d	d	d	d	d	d	d	d	d	d	d	d	d	d	C	d	d	d	d	d	d	RSC and PROBE agree
d	d	d	d	d	d	d	d	d	d	d	d	d	d	d	d	d	c	d	d	d	d	d	d	on unit status no
· .							d	d	d	d	d	d	d	d	d	d	с	d	d	d	d	d	d	
d	d	d	d	d	d	d	d	С	С	С	С	d	d	d	d	d	с	С	С	d	d	d	d	Change.
· .						d	d	d	d	d	d	d	d	d	d	d	с	d	d	d	d	d	d	
d	d	d	d	d	d	d	d	d	d	d	d	d	d	d	d	d	с	d	d	d	d	d	d	
d	d	d	d	d	d	d	d	d	С	С	d	d	d	d	d	d	с	d	С	d	d	d	d	
d	d	d	d	d	d	d	d	d	d	d	d	d	d	d	d	d	с	d	d	d	d	d	d	trom condensing mode
d	d	d	d	d	d	d	d	d	d	d	d	d	d	d	d	d	с	d	d	d	d	d	d	(RSC committed unit in
· .						d	d	d	d	d	d	d	d	d	d	d	с	d	d	d	d	d	d	condensing mode).
d	d	d	d	d	d	d	d	d	d	С	С	d	d	d	d	d	с	С	С	С	С	С	d	
d	d	d	d	d	d	d	d R	d R	d R	d R	d R	d R	d	d	d	d	С	d	d	d	d	d	d	changes

PJM Real-Time Market Clearing Process

Ancillary Services Optimizer (ASO)

Clearing and assignment of regulation and inflexible reserve resources (solved 60 minutes prior to target time, looks ahead 60 minutes beyond target time)

Intermediate-Term Security Constrained Economic Dispatch (IT SCED)

Demand Trajectory, generator loading strategy, Demand Response commitment for energy, CT commitment and inflexible synchronized reserve recommendations (solved 30 minutes prior to target time, looks ahead 15, 30, 75 and 120 minutes beyond target time)

PJM Real-Time Inflexible Reserve Assignments

PJM Ancillary Services Optimizer

(ASO) will honor inflexible reserve resource assignments (i.e., synchronous condensers) from the Day-Ahead Market (DAM)

except in the following cases:

Unit is committed by ASO for regulation

2

Unit changes any of its offer parameters after the DAM

Synchronous Condenser Energy Use

Synchronous Condenser Energy Use Cost

Synchronous Condenser Lost Opportunity Cost (LOC) Credits

Simulation Methodology Overview

To estimate the benefits from the additional flexibility provided by the synchronous condenser mode optimization in the PJM Day-Ahead Market, simulations were run using the PROBE DA Market clearing software.

Two cases were simulated,

and the differences between the two were measured to estimate the impacts on social welfare:

BASE CASE:	SYNCHRONOUS CONDENSER (SC) CASE:
Generators are not allowed to run in condensing mode.	Condensing mode optimization is implemented using the MCR model.

All other variables were held constant between the two cases.

175 days were simulated from Oct. 3, 2023, through March 31, 2024. Six days were excluded due to data issues.

Simulation Results – Monthly Increase in Economic Surplus (Benefits – Costs) from Condensing Mode Optimization

Simulation Results – Uplift Payments

22

Using the MCR model for condensing mode optimization:

